Fluid-Structure-Coupling Using the TAU Code: Developments and Applications at the DLR Institute of Aeroelasticity

Wolf Krüger
DLR Institute of Aeroelasticity
Fluid-Structure-Coupling at the Institute of Aeroelasticity
Current activities and projects involving the TAU code (1)

- **Focus on applications:**
 - Fluid-structure coupling with large (industrial) models
 - Coupling of fluid, structure and flight mechanics using CFD

- **Focus on development of methods:**
 - Improvement of fluid-structure coupling schemes in the space domain
 - Investigations and development of coupling algorithms in the time domain

- **Focus on understanding the physical background:**
 - Transonic aeroelasticity, limit cycle oscillations, buffet, boundary layer modelling, wing/engine interference, wing/control surface interference, thermo-fluid-structure-coupling
Fluid-Structure-Coupling at the Institute of Aeroelasticity
Current activities and projects involving the TAU code (2)

TAU is used for

- Pre-processing
- Solver
- Post-processing
- Deformation tool

TAU is used in

- DLR projects HighPerFlex, SikMa, MegaOPT
- DLR-ONERA-cooperation NLAS (Non-Linear Aeroelastic Simulation)
- DLR-ONERA-project: SHANEL (just beginning)
Fluid-Structure-Coupling Using TAU and FEA
CFD/FEA-Interpolation

- **Background:**
 - Physically correct spatial interpolation between CFD and FEA discretization
 - Introduction of interpolation algorithms into TAU code
- **Challenges:**
 - Investigation of suitable coupling algorithms
 - Usage of detailed, large scale models
- **Approach:**
 - Static coupling of FEA (NASTRAN) and CFD (TAU) by file-based communication scheme; use of TAU deformation tool
 - Different interpolation algorithms, for large models: subset interpolation
Fluid-Structure-Coupling Using TAU and FEA
Example - Medium Model Complexity

- fluid and structure with different discretization

CFD-model
54,653 surface grid points

resulting load on nodes from calculated aerodynamic pressure?

FE-model
75 nodes

deformation of CFD-mesh for given structural deformation?

Research example: AMP-Wing
Fluid-Structure-Coupling Using TAU and FEA
Example - High Model Complexity

Industrial example: A340-300

CFD (half) model
287,620 surface grid points

FE (half) model
29784 nodes
Fluid-Structure-Coupling Using TAU and FEA
Airbus A340-300 – Coupling Structure

- chosen surface nodes of the finite elements structure
- four separate coupling structures with 1131 nodes
Fluid-Structure-Coupling Using TAU and FEA

Test of Subset Interpolation

- 287620 x 1131 surface nodes
- up to 4.0 m analytical deformation at wing tip
- up to 3.0 m at horizontal tailplane
- Max. difference of the interpolated surface:
 - wing ~1.5 cm
 - pylon ~3.0 cm
 - nacelles ~0.9 cm
 - horizontal tail ~2.9 cm
 - vertical tail ~0.55 cm
 - fuselage ~1.6 cm
Fluid-Structure-Coupling Using TAU and FEA
Static Aeroelastic Coupling Results

- Mach = 0.82; $\alpha = 2.02571^\circ$; cruise condition
- 1 Iteration; Example: comparison of different interpolation algorithms

deformed wing of the FE-model

interpolated aerodynamic surface

![Graphs showing comparison of moment distribution](image-url)
Fluid-Structure-Coupling Using TAU and FEA
Time domain simulation of the transonic flutter boundary

- **Background:**
 - time simulation of the transonic flutter boundary to complement classical approaches typically based on corrected DLM methods

- **Challenges:**
 - physical representation, esp. energy exchange between systems
 - small step size, large amount of data to be exchanged (meshes), i.e. large computational task
 - Euler calculations not suitable for simulation of transonic flutter boundary!

- **Approach:**
 - co-simulation, time-exact solution
 - CFD-FEA coupling using MATLAB (file-based I/O) or TENT/PYTHON
Co-simulation (loose coupling) for fixed communication interval between Tau and structure solver

- CFD time integration: implicit dual-time step, i.e. implicit BDF2 method for physical timestep and explicit 5-stage Runge-Kutta for inner (local) timestep
- Structure time integration: Newmark method / implicit BDF2 method (SODASRT, DASL based)
- CSS is coupling of 1st-order accuracy
Fluid-Structure-Coupling Using TAU and FEA
Dynamic Flutter-Simulation - Transonic Dip

- two cases: $Ma=0.82; \alpha=2.55^\circ$

 (1) $p_0=0.8$ bar (stable)

 (2) $p_0=0.9$ bar (flutter boundary)
AMP – Unsteady Coupling Results - TAU-Nastran

- in region $ma=0.6$
 TAU-Euler
- in region $ma=0.82$
 TAU-RANS
Aeroelasticity-Flight Mechanics-Coupling Using TAU

- Background:
 - Coupling of structural mechanics, CFD and flight mechanics
 - (see more in next presentation…)

- Challenges:
 - Coupling of models of substantially different complexity
 - Investigation of suitable coupling schemes, spatial and in time domain for transient motion

- 2 approaches
Aeroelasticity-Flight Mechanics-Coupling Using TAU

1. So-called “Discrete” approach:
 - Structure based on NASTRAN model, linear, full size
 - Non-linear flight mechanics by separate tool (SIMULA of DLR Institute of Flight System Technology)
 - TAU Euler / RaNS calculations for CFD Coupling, point-based interpolation
 - Overall integration and work flow control in TENT
Aeroelasticity-Flight Mechanics-Coupling Using TAU

2. So-called “Modal” approach:

- Based on elastic multibody simulation model, structure from NASTRAN model after modal reduction, interpolation using MpCCI
- Non-linear flight mechanics inside multibody simulation tool
- TAU Euler / RaNS calculations for CFD Coupling, element-based interpolation
- Overall integration and work flow control in MBS tool or TENT
Aeroelasticity-Flight Mechanics-Coupling Using TAU
Example: AeroSUM Delta Wing – MBS / FEA

- AeroSUM model (generic delta wing on sting)
- Simulation of a guided roll maneuver and a free-to-roll maneuver
SikMa Model - guided roll maneuver

- Roll frequency $\phi_x = 5$ Hz; mach = 0.5; $\alpha = 5.0^\circ, 6.0^\circ$ und 9.0°;
- Comparison of measured and calculated deflections at the nose.
Comparison between rigid and elastic model

angle of incidence $\alpha = 45.0^\circ$, $\Phi_{x,0} = 45.0^\circ$, $ma = 0.5$

SikMa Model - free-to-roll maneuver

Comparison of the Moments M_x and the roll angle Φ_x for rigid aerodynamic - flight mechanic coupling and elastic aerodynamic - flight mechanic - structural mechanic coupling.

Deltawing (Euler Calculation)
flow conditions:
$Ma = 0.5$, $\Phi_{0} = 45.0^\circ$
angle $\alpha_{\text{airfoil}} = 9.0^\circ$

Φ - elastic
M_x - elastic
Φ - rigid
M_x - rigid
Flap deflections by Interpolations - Unsteady Aerodynamic

Mach=0.5; \(\alpha = 0.0^\circ \); antisymmm. flap deflection of 10.0\(^\circ\); flap frequency=5.0 Hz; \(\Delta t=0.002\); 100 time steps per periode
Conclusion:
Commendation and “Wish List”

- Time for thanks and praise:
 - TAU team responsive and helpful
 - TAU shows good functionality of solver and pre-processor in parallel operation
 - Error messages are helpful for users
 - High stability in Euler mode, with meshes of good quality also in Navier/Stokes-Mode
 - Good functionality of deformation tool with Euler meshes
Conclusions: Commendation and “Wish List”

- Suggestions:
 - aeroelastic coupling based on file I/O possible, but cumbersome for time simulation (improvement, e.g. use of PYTHON, is work-in-progress!)
 - partially satisfactory functionality of deformation tool for Navier/Stokes-meshes with large deformations
 - Chimera technique in combination with deformation tool is necessary for many aeroelastic applications, e.g. for large deflections or control surface deflection on elastic wings (SikMa, HighPerFlex)

THANK YOU!